Consensus Building in Level 4 **Automated Driving Field Trials** through Assurance Cases

Yutaka Matsuno

Nihon University, Japan matsuno.yutaka@nihon-u.ac.jp

Michio Hayashi and Tomoyuki Tsuchiya
TIER IV, North America & Japan
michio.hayashi.2,tomoyuki.tsuchiya@tier4.jp

01 Introduction

Contents

O2 GSN Model & Safety Status Report

O3 Questionnaire and Consensus Score

O4 Concluding Remarks

Background

- SAE Level 4 (L4) automated driving systems are "open systems"
- The environment continuously evolves and uncertainties increase
- Openness broadens the group of stakeholders that are part of the system
 - o Internal stakeholders: CxO, Fellow, Architect, Business, R&D,...
 - External stakeholders: Citizens, City Officials, Police, Nation, Investor,...

Consensus Building among Stakeholders (safety expert/non-expert)

TIER IV L4 Automated Driving Demonstration

- TIER IV, an automated driving startup, began planning an SAE L4 demonstration in a city in Japan, Nov 2024
 - Successfully conducted without any incidents in Jan 2025
- We detail how the demonstration was planned, prepared, and conducted, focusing on consensus building regarding safety among internal stakeholders

Related Work (1/2)

Assurance Cases for AD Systems

- Patterns
- Standards
 - ISO 26262, SOTIF, UL 4600

Confidence Assessment Methods (CAMs)

- Expert-based scoring
- Probabilistic models
- Eliminative argumentation
- Bayesian networks

Related Work (2/2)

Safety Communication Practice

- UL 4600: Engineer-centric detailed template
- SAFAD: 12 safety principles with V&V roadmap
- NHTSA VSSA: Public-facing safety booklets

Our Activities in Japan

- Assurance Cases and GSN adoption since 2009
- Focusing on Consensus Building

Challenges

- GSN Communication: Difficult to effectively communicate with safety non-experts
- One-way communication
- Consensus Assessment: Lack of means to measure agreement across diverse stakeholders

Our Contributions

- Stakeholder-oriented safety communication framework
 - Safety Status Report:
 Plain-language complement to
 GSN-based arguments
 - Two-way communication by questionnaire
- Consensus Score

L4 Demonstration Context

- Location: A Japanese City
- Vehicle: Minibus (BYD J6)
- Planning: Nov. 2024
 Launch: Jan. 2025
- Challenge: No formal safety report initially

Process Overview

- 1. Initial GSN Creation
- 2. Safety Status Report Drafting with natural language
- 3. Real-world data collection
- 4. SOTIF Alignment Loop
- 5. Questionnaire Survey
- 6. L4 Demonstration

Initial GSN Development

- Attempted GSN-based assurance cases using existing development artifacts
- Result: Multiple defeaters and insufficient evidence to justify safety claims
- Decision: Document current limitations rather than complete assurance

Our Approach

- Transparently communicate current safety status, not to claim complete safety
 - (≠ Safety Case Report)
- Continuously updated with fleet evaluation data

Safety Status Report (SSR)

GSN Model Structure

- Approach
 - Deductive argument from inductive analysis of existing artifacts
- Design Choice
 - Abstraction level chosen to facilitate stakeholder discussions
 - Balances technical detail with accessibility for non-safety experts

GSN Model Top Structure

G1: Designated operation during demonstration

S1:System safety and operational risk decomposition

Operation scope: Automated minibus from Bus Stop A to Bus Stop B

System Safety (G2)

Context nodes:

C2: Risk scenario list

• C3: SOTIF

• C4: ISO 26262

Sub-goals:

- G4: Safe operation under defined environment conditions
- G5: Transition to safe state during abnormal situations

Operational Risk Management (G3)

Sub-goals:

- G6: Effectiveness of risk mitigation measures
- G7: Validation of effectiveness

Contexts:

- C7: Challenging driving conditions
- C8: Abnormal state list
- C9: Operational risk control measures

Safety Status Report based on GSN

Objectives

- Identify reasonably foreseeable risks
- Communicate current safety status to stakeholders
- ALARP safety planning

Planting creates the blind spots during turning left

Contents

- System Design constraints
- Route restrictions & emergency protocols
- Safety operator procedures
- On-site safety monitors
- Road traffic law compliance

Outcomes

Path to future full autonomy

Questionnaire Overview

- Jan 13-20, 2025
- 28 TIER IV internal stakeholders directly involved in L4 pilot
- Responses: 21
 1 CxO, 2 Technical Fellows,
 1 Architect, 5 Business Division,
 10 Product Division,
 2 R&D Division
- Rating Scale: 4 point Likert (0-3)
- Questions for G1-G7, S1-S3
 - With open-ended comments

Do you think residual risks can be controlled through operational measures (0-3)? Safety Status Report Reference: List of scenarios where safe driving is difficult (C7) List of abnormal states/conditions that are difficult to handle (C8)									
	0	1	2	3					
Strongly Disagree	0	0	0	0	Strongly Agree				
Please also provide the reasons for your score. Long answer text									

Questionnaire format for Goal G3

Average stakeholder ratings (0-3)

Organization	G1	G2	G3	G4	G5	G6	G7	S1	S2	S 3
CxO (n = 1)	2.0	2.0	2.0	1.0	1.0	1.0	2.0	1.0	2.0	2.0
Fellow (n = 2)	0.5	2.0	1.0	0.0	0.5	0.5	1.5	1.0	1.5	1.0
Architect (n = 1)	2.0	0.0	2.0	1.0	0.0	2.0	1.0	3.0	3.0	3.0
Business Div. (n = 5)	2.4	1.4	2.4	0.8	1.8	2.0	1.4	3.0	3.0	2.4
Product Div. (n = 10)	1.2	0.9	1.5	1.1	0.9	1.5	1.3	2.8	2.8	2.4
R&D Div. (n = 2)	2.0	1.0	1.5	0.5	1.0	2.0	2.0	2.5	3.0	3.0
Overall (n = 21)	1.6	1.1	1.7	0.9	1.0	1.6	1.4	2.6	2.7	2.3

Role-specific comments

CxO

Supports overall feasibility

Technical Fellows

Strongly questions technical safety and evidence sufficiency

Architect

Generally endorses operational risk mitigation

Business Division

Positive on early demonstration

Product Division

Points out reliance on human intervention

R&D Division

Calls for deeper analysis of operation-based mitigations and unknown risks

Quantifying Consensus

In most cases, each goal's score is higher than its sub goals

- Top-level goal benefit from holistic assessment that naturally extends beyond documented elements
- Specific sub-goals face more rigorous scrutiny of their technical evidence and test coverage

Top-Down and Bottom-Up Views in Assurance Cases

Top-down, holistic view

Bottom-up, detailed view

- We can't document everything
- To harmonize these views, we propose Consens Score

Definition (Consensus Score)

Case 1: Leaf Node

For goal G with $AverageRating(G) \in [0,3]$:

ConsensusScore(G)

AverageRating(G)/3

Normalizes rating to [0,1]

Case 2: Decomposed Goal

When G is decomposed by strategy *S*:

ConsensusScore(G)

$$(A + B \times C)/2$$

Where:

 $\mathbf{A} = \text{AverageRating}(G)/3$ (normalized goal rating)

 $\mathbf{B} = \text{AverageRating}(\mathbf{S})/3$ (normalized strategy rating)

C = mean of the consensus scores of G's subgoals

- Recursive definition allows propagation through GSN
- Combines direct evaluation (A) with sub-goal evaluation ($B \times C$)
- All scores normalized to [0,1]

Consensus Score for TIER IV L4 Demonstration

Node	G 1	G2	G3	G4	G5	G6	G7
Consensus Score	0.44	0.33	0.48	0.30	0.33	0.53	0.47

- Agreed with a restricted L4 demonstration
- Remained cautious about deploying full-scale L4 automated driving

Comparison of Consensus Score & CAMs

Consensus Scoring

Stakeholder agreement & acceptance

Top-down & bottom-up Approach

integration

Survey-based Input

Focus

stakeholder ratings

Degree of consensus Output

(0-1 score)

Identifies acceptance & Strength

dissent patterns

Multi-stakeholder **Best for**

decision making

CAMs

Focus

Argument validity & technical confidence

Approach

Bottom-up evidence

evaluation

Expert judgment & Input

evidence properties

Confidence level & Output

defeater identification

Strength Rigorous

uncertainty/validity

analysis

Technical safety **Best for**

verification

- Consensus Score and CAMs are complementary
- In L4 pilot,
 - Not confident in defining detailed parameters to apply CAMs
 - Time and cost constraints

Concluding Remarks

- Stakeholder-oriented framework with Consensus Score
 - Successfully applied in SAE L4 field demonstration
- Key Lessons
 - Transparent Communication
 - Consensus Process Drives Safety
 - Inclusive Stakeholder Engagement
- Future Work
 - Extend to external stakeholders
 - Elaborate Consensus Score
 - Consensus Building based on Confidence Assessment