ULS: A unified likelihood scale for cross-standard risk assessment

Mohamed Abdelsalam Simon Greiner Oum El Kheir Aktouf Annabelle Mercier

Introduction

Introduction

Motivation

Smart traffic system Munich

Talking traffic program
Netherlands

- What are Intelligent Transport Systems (ITS)?:
 - They are smart systems that help vehicles, roads, and traffic signals work together to make travel safer and efficient.
- ITS is spreading rapidly across the globe.
- The faster **ITS** grows, the more essential it becomes to ensure consistent and reliable risk assessment.

Introduction

Problem statement

- ITS systems such as vehicles, smart infrastructure, cloud backend systems use different standards.
- Hence, it is hard to perform a unified risk assessment.
- Different security standards use different methods for calculating risk likelihood.
 - Attack Potential (AP) from ISO 21434

Exploitability Sub-Score (ESS) of CVSS from ISO 27005

What is ULS?

- A common scale to map values of different likelihood methods.
- Allows for sharing likelihood values between different systems.
- Supports unified risk assessments.
- Allows for cross-standard risk assessment.

ULS What is ULS?

ULS translates different risk likelihood values into a common language

ULS development

AP

0

1. Generate all the possible AP and ESS mappings to the ULS.

ESS

3.89

0.12

- 2. Use an attacks dataset to evaluate each mapping.
- 3. Calculate mapping error per attack.

ULS

Α

В

D

4. Select the optimal ULS based upon our criteria.

likelihood values to the 4 segment ULS?

How to select the best ULS mapping?

How to map the

ULS development

1. Generate all possible ULS mappings

- a) Define the possible value ranges
 - AP values range from 0 to 57.
 - ESS values range from 3.89 to 0.12.

b) ULS segmentation

 For AP and ESS, generate all valid ways to divide their values into 4 segments.

c) Pair all AP and ESS mappings

 Pair each possible AP-to-ULS mapping with each possible ESS-to-ULS mapping.

АР	AP	АР	ULS	ESS	ESS	ESS
0-12	0-15	0-19	Α	3.89-2.22	3.89-2.07	3.89-1.83
13-20	16-25	20-31	В	2.07-1.34	1.83-1.05	1.62-0.76
21-35	26-39	32-45	С	1.23-0.67	0.91-0.51	0.71-0.49
36-57	40-57	46-57	D	0.66-0.12	0.49-0.12	0.46-0.12

ULS development

2. Use the dataset to evaluate each mapping

 a) Every mapping pair is evaluated using the attacks in the dataset.

3. Calculate mapping error

- a) Each ULS segment has a numerical value, A=1, B=2, C=3, D=4.
- b) Error = |ULS(AP) ULS(ESS)|.
- c) Calculate the average error over all attacks.

Calculating Error

ULS development

4. Select the optimal ULS based upon our predefined criteria

- a) Minimize the mapping error
- b) Utilize the four ULS segments
 - To avoid too narrow or too wide segments.
- c) Prioritize most frequent segmentations
 - As we could have several mappings with equal mapping errors.

Example

Scenario:

- A vehicle's ECU uses AP from ISO/SAE 21434 (AP=17).
- A cloud backend system uses Exploitability Subscore (ESS) from CVSS (ESS=2.07).

- AP and ESS values are **incompatible**; no direct way to compare their likelihood values.
- Risk values stay isolated within subsystems.
- Unified risk analysis becomes **subjective or challenging**.

With ULS:

System	Likelihood method	ULS segment
Vehicle ECU	AP = 17	Segment A = 1
Cloud backend	ESS = 2.07	Segment B = 2

P

АР	ULS	ESS	
0-17	Α	3.89-2.22	
18-25	В	2.07-1.44	
26-41	С	1.34-0.58	
42-57	D	0.52-0.12	

ULS DATASET

Dataset challenges:

- Lack of publicly available rated attacks datasets.
- Skew of available attacks online towards easy to execute attacks.
- Manual effort required to rate attacks.
- We constructed our own dataset of vehicle cybersecurity attacks.

Documented-attacks

Real-world attacks reported in public sources such as research papers, security blogs or vulnerability databases.

Derived-attacks

Constructed based on variations or extrapolations of existing attacks.

Conclusion

Conclusion

- Intelligent Transport Systems (ITS) rely on interconnected systems where each uses different risk assessment standards and methods.
- ULS bridges the gap between the different likelihood methods in risk assessments.
- ULS enables cross standard risk assessments and more secure collaborations between systems.

Future work:

- Extending the method to more standards and likelihood methods.
- Expanding the attacks dataset.

